
Local Search Algorithms1

• Local Search is a natural and a very commonly used heuristic in practice. It states that given any
solution to an optimization problem, if certain simple “local” changes can improve the solution, then
one should do it. When no such improvements via local changes are possible, the resulting solution
is called a local optimum. In certain situations, it is possible to analyze the local optimum “globally”.
More precisely, one can prove an approximation factor for the local optimum solution using the fact
that local changes do not improve it. In this lecture, we look at some examples of this phenomenon.

• Max Cut in Undirected Graphs. In this problem we are given an undirected graph G = (V,E)
with non-negative weights w(e) on edges e ∈ E. Given a subset of vertices S ⊆ V , the subset
∂S := {(u, v) ∈ E : u ∈ S, v /∈ S} of edges is called the cut induced by S. The goal is to find
a subset S ⊆ V which maximizes w(∂S) :=

∑
e∈∂S w(e), the weight of the cut edges. Unlike the

minimum cut version, the maximum cut problem is NP-hard. Here is a simple local search algorithm
for the same.

1: procedure UNDIRECTED MAX-CUT LS(G = (V,E); w(e) on edges):
2: Initialize X to an arbitrary subset of V .
3: while true do:
4: if ∃v ∈ S s.t. w(∂(S − v)) > w(∂S) then:
5: S ← S − v.
6: else if ∃v /∈ S s.t. w(∂(S + v)) > w(∂S) then:
7: S ← S + v.
8: else: . Reached local optimum and terminate loop
9: break.

10: return S.

• Analysis. The following theorem shows that the above local optimal solution is a 1
2 -approximation

since any cut contains only a subset of edges and thus opt ≤ w(E).

Theorem 1. Let S be the subset obtained at the termination of UNDIRECTED MAX-CUT LS.
Then, w(∂S) ≥ w(E)/2 ≥ opt/2.

Before we go to the proof, let us introduce some useful notations. For any two subsets A and B of
vertices, let E(A : B) denote the edges with one endpoint in A and the other in B. In fact, soon
we will talk about directed graphs, in which case E(A : B) will be the edges which originate from
a vertex in A and land in a vertex in B. In directed graphs, E(A : B) and E(B : A) are different
sets; in undirected graphs they are the same. When A = {v} is a singleton vertex, we will often abuse
notation and lose the curly braces, and simply write E(v : B). For any subset A ⊆ V , we use A to
denote the complement V \ A. Finally, we use the shorthand w(A : B) to imply w(E(A : B)), the
weight of the edges in E(A : B).

1Lecture notes by Deeparnab Chakrabarty. Last modified : 8th Jan, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!
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Proof. First observe that for any subset X ⊆ V , we have

w(∂(X − v))− w(∂X) = w(X : v)− w(v : X), ∀v ∈ X

since in going from ∂X to ∂(X − v), we lose the edges E(v : X) and gain the edges E(X : v)2.
Similarly,

w(∂(X + v))− w(∂X) = w(v : X)− w(X : v), ∀v /∈ X;

Therefore, using the fact that S is a local optimum, we can assert

∀s ∈ S : w(S : s) ≤ w(s : S); ∀t ∈ S : w(t : S) ≤ w(S : t)

Adding the above inequalities for all s ∈ S and t ∈ S, we get∑
s∈S

w(S : s) +
∑
t∈S

w(t : S) ≤
∑
s∈S

w(S : s) +
∑
t∈S

w(S : t) (1)

We are almost done. Observe that
∑

t∈S w(S : t) is precisely the w(∂S), and since the graph is undi-
rected, so is

∑
s∈S w(S : s). Therefore, the RHS in (1) is 2w(∂S). Next, observe that

∑
s∈S w(S : s)

is adding up the weights of edges of the type (s, s′) where both end points are in S, and each such
edge is counted twice. Therefore, the LHS in(1) is two times the weight of all edges which are not
present in ∂S. Therefore,

2 (w(E)− w(∂S)) ≤ 2w(∂S) ⇒ 2w(∂S) ≥ w(E)

• Max-Cut in Directed Graphs. In the Max DiCut problem, we are given a directed graphG = (V,E)
with non-negative weights on edges. For a subset S of vertices, ∂+S := {(u, v) ∈ E : u ∈ S, v /∈ S}
be the directed out-cut of S and ∂−S := {(u, v) ∈ E : u /∈ S, v ∈ S} be the directed in-cut. The
objective is to find S ⊆ V maximizing w(∂+S) :=

∑
e∈∂+S w(e). The local search algorithm is

almost the same with one last twist at the end.

1: procedure DIRECTED MAX-CUT LS(G = (V,E); w(e) on edges):
2: Initialize X to an arbitrary subset of V .
3: while true do:
4: if ∃v ∈ S s.t. w(∂+(S − v)) > w(∂+S) then:
5: S ← S − v.
6: else if ∃v /∈ S s.t. w(∂+(S + v)) > w(∂+S) then:
7: S ← S + v.
8: else: . Reached local optimum and terminate loop
9: break.

10: return S or S, whichever has a larger w(∂+·). . the twist.

2Technically, we should write E(X−v : v), but what we write is ok since we can assume wlog that the graph has no self-loops.
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Exercise: K Show that the twist is necessary. More precisely, if the algorithm returned S, then
it could be very bad solution.

Exercise: K Generalize the proof of Theorem 1 and prove that the weight of the local optimum
cut returned by DIRECTED MAX-CUT LS is at least w(E)/4. Also describing an example where
this is tight, that is, the weight of the local optimum cut is very close to w(E)/4.

• Analysis. The exercise above shows that the DIRECTED MAX-CUT LS is a 1
4 -approximation. We

now show that it is in fact better; it is a 1/3-approximation. This may seem contrary to the second part
of the above exercise, but note that in that example even the optimal cut’s value is “far” from w(E).

Theorem 2. The cut returned by DIRECTED MAX-CUT LS is an 1
3 -approximation.

Proof. Let O be the optimal solution. Note that ∂+O := E(O : O). We are going to divide these
edges into four disjoint subsets. We refer the reader to Figure 1 for a useful illustration.

E(O : O) = E(O∩S : O∩S) t E(O∩S : O∩S) t E(O∩S : O∩S) t E(O∩S : O∩S)

and thus,

opt = w(O ∩ S : O ∩ S) + w(O ∩ S : O ∩ S) + w(O ∩ S : O ∩ S) + w(O ∩ S : O ∩ S) (2)
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Figure 1: The rectangle denotes V . The set S is what is vertically below the letter marked in blue, and the set O is
what is horizontally to the right of the letter marked in yellow. O ∩ S is the green (= blue + yellow) region. The blue
edges are those in ∂+O divided into four parts. Part marked with “a” is charged to the salmon colored “a” edges in
∂+S. Similarly, the blue “b” edges are charged to the salmon “b” edges. The cross blue edges are in ∂+S or ∂+S.

Now we use the local optimality conditions. Recall,

∀s ∈ S : w(S : s) ≤ w(s : S); ∀t ∈ S : w(t : S) ≤ w(S : t)

In particular, this is used for the first and fourth sets in (2) as follows

∀s ∈ O∩S : w(O∩S : s) ≤︸︷︷︸
since w ≥ 0

w(S : s) ≤ w(s : S) ⇒ w(O∩S : O∩S) ≤ w(O∩S : S) ≤︸︷︷︸
since w ≥ 0

w(S : S)

(3)
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∀t ∈ O∩S : w(t : O∩S) ≤︸︷︷︸
since w ≥ 0

w(t : S) ≤ w(S : t) ⇒ w(O∩S : O∩S) ≤ w(S : O∩S) (4)

The second and third term in (2) are upper bounded more simply as

w(O ∩ S : O ∩ S) ≤︸︷︷︸
since w ≥ 0

w(S : S) and w(O ∩ S : O ∩ S) ≤︸︷︷︸
since w ≥ 0

w(S : O ∩ S) (5)

Adding Equations (3) to (5) and substituting in Equation (2), we get

opt ≤ w(S : S) + w(S : S) + w(S : O ∩ S) + w(S : O ∩ S)︸ ︷︷ ︸
=w(S:S)

≤ 3alg

Exercise: K Describe an example showing that the analysis above is tight.

• Running Time? Above, we argued that the cut returned by the above algorithms are 1
2 and 1

3 approx-
imations, respectively. However, do these algorithms terminate? Well, every time the while loop runs,
the weight of the cut strictly goes up. Does that imply termination? Yes. Because, it means the same
cut can’t be seen again. Therefore, the algorithm terminates in at most 2n loops. But that is ridiculous
for in that time we can in fact find the global optimum. Can we do a better analysis of the running
time? The answer is no! In fact, there are weights where the number of loops can be exponential in n.

What then? Firstly, note that when the weights on the edges are small integers (eg, an unweighted
graph), the algorithm does terminate in mW -loops, where W = maxe∈E w(e); this is because the
weight of the cut goes up by 1 in each loop. Another thought is that perhaps we can find a locally
optimum solution in a different way. One doesn’t need to do local search to find a local optimum.
Indeed, this is an open question. However, this may not be possible (see Notes for a little more
discussion).

This brings us to a standard idea present in many local search algorithms which face such problems.
Note that both the algorithms above perform a “local step” if that step strictly increases the solution.
The modification of this idea is : perform the local step only if it leads to a significant increase in the
solution. More precisely, in the UNDIRECTED MAX-CUT LS algorithm, we replace the if- and else-if
conditions with w(∂(S − v)) > (1 + ε)w(∂S) and w(∂(S + v)) > (1 + ε)w(∂S), respectively, for
some fixed parameter ε > 0. Then one can show the following, which is left as an exercise for the
reader.

Exercise:KK Prove that the modified UNDIRECTED MAX-CUT LS (a) terminates inO
(
lognW

ε

)
-

while loops, and (b) returns a solution which is
(
1
2 − ε

)
-approximate. Here W is the maximum

weight of an edge when all weights are integer valued.

• Maximum Colorful Coverage. For the final example of this lecture, we consider a twist on the
maximum coverage problem which we have seen greedy algorithms for. The input is like the set-
cover problem. A universe U of n elements, and m subsets (S1, . . . , Sm). However, each subset Si
now has a color χi which is one of k colors. Without loss of generality we assume χi ∈ {1, 2, . . . , k}.
We need to pick k sets each of a different color so that the union is as large as possible.

Here is a local search algorithm.
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1: procedure COLORFUL COVERAGE LS(U , S1, . . . , Sm, Colors on sets):
2: Initialize S := (S1, . . . , Sk) arbitrarily picking one set from each color class.
3: . We use val(S) to denote | ∪S∈S S|.
4: . We will use Sc to denote the set of color c in S.
5: while true do:
6: if ∃S′c of color c such that val(S − Sc + S′c) > val(S) then:
7: S ← S − Sc + S′c
8: else:
9: break.

10: return S .

Theorem 3. COLORFUL COVERAGE LS returns a 1
2 -approximation.

Proof. Let (S1, . . . , Sk) be the solution returned by the local search algorithm, and let (O1, . . . , Ok)
be the optimal solution. We have renamed the sets such that Si andOi are of color i. LetA =

⋃k
i=1 Si

and let O =
⋃k

i=1Oi. Note that opt = |O| and alg = |A|.
Let X = O \ A be the set of elements that the optimal solution covers but the local search algorithm
misses. Let θi = |Oi ∩ X| denote the number of these elements that are present in Oi. Note,
|X| ≤

∑k
i=1 θi. Let ni := {e ∈ Si : e /∈ Sj , j 6= i} be the number of elements in A which

are uniquely covered by Si. Note that |A| ≥
∑k

i=1 ni.

Now, S ′ := S − Si +Oi is a feasible solution of value val(S ′) = val(S)− ni + θi. Since S is a local
optimum, we get that ni ≥ θi for 1 ≤ i ≤ k. And so

|A| ≥
k∑

i=1

ni ≥
k∑

i=1

θi ≥ |X| ≥ |O| − |A| ⇒ |A| ≥ |O|
2

Notes

The complexity of local search was initiated in the paper [1] by Johnson, Papadimitriou, and Yannakakis.
They defined a complexity class called PLS which captures the complexity of finding locally optimum solu-
tions for optimization problems. Soon after, Schaffer and Yannakakis [2] proved that the max-cut problem
is PLS-complete. A repercussion is that if one finds a polynomial time algorithm for the problem of finding
a local optimum cut, then there exists efficient algorithms for a host of problems (all problems in this class).
We refer the reader to the papers for more details.
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